Nonequilibrium diffusion of reactive solid islands

F. Leroy,¹, Y. Saito,² F. Cheynis,¹ E. Bussmann,³ O. Pierre-Louis,⁴ and P. Müller¹

¹Aix-Marseille Universit´e, CINaM UMR 7325, Campus de Luminy, Case 913, F-13288 Marseille Cedex, France

²Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan

³Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

⁴Institut Lumiere Matiere, UMR 5306 Universit'e Lyon 1-CNRS, Universit'e de Lyon 69622 Villeurbanne, France

In this paper we report on the combined effects of reactivity, wetting, and shape changes on the random motion of crystalline Si islands on amorphous SiO_2 substrates during annealing. For this purpose nanoparticle motion and size evolution are studied both experimentally (*in situ* and real time experiments) and theoretically [kinetic Monte Carlo simulations (KMC) including chemical reactivity).We show that the time dependence of the mean square displacement. behaviors: (I) an equilibrium Brownian motion consistent with existing equilibrium theories, leading to strong size dependence of the diffusion constant, (II) an unexpected regime characterized by a linear time dependence of the MSD roughly independent on the nanoparticle size, attributed to a repeated pinning depinning of the triple line in ring-shape trenches formed by chemical reaction, and (III) a self-trapping regime where the reactive islands are trapped in the pit they drill in the substrate, leading to a saturation of the MSD.

The experimental observations are supported by the KMC simulations, based on interface reaction of Si with SiO2, interface diffusion of oxygen, and evaporation of SiO.

Reference:

F. Leroy, Y. Saito, F. Cheynis, E. Bussmann, O. Pierre-Louis, and P. Müller Phys. Rev. B **89**, 235406 (2014)