Aller au contenu principal

QUANTAMONDE

QUANTum and Atomistic MOdeling NanoDEvices
Coordinatrice / Coordinateur du projet :
Cadre :
Agence National de la Recherche (ANR)
Durée :
36 mois
Date de démarrage :
Résumé :

This proposal focuses on the development of a new generation of quantum transport simulation tools tackling with atomic scale issues which become of paramount importance for understanding low dimensional semiconductor devices.

On the basis of a common Green’s function formalism, the complementary expertises of partners, ranging from state-of-the-art ab initio approach, to sophisticated tight-binding and effective mass models have been combined to develop multiscale 3D device simulation codes. It allowed an in-depth analysis of quantum transport properties and field effect transistor characteristics in realistic models of both top-down ultimate MOSFETs and bottom-up CVD-grown semiconductor nanowires.
Using an upscaling strategy from ab initio to effective mass schemes, the impact of intrinsic scattering mechanisms on current characteristics have been investigated, based on a rigorous self-consistent treatment of electrostatics. Simultaneously, the quantum coherent effects in the low temperature regimes have been explored, with a focus on the spin coherence lengths in the perspective of semiconductor nanowire-based spintronics.

QUANTAMONDE project offered a natural means for fusing the expertise of different research groups and leading to breakthroughs in the understanding of nano-transistors.

Main publications:

- Holes transport:

N. Cavassilas et al., IEEE-IEDM, Tech. Digest p.67 (2009). http://dx.doi.org/10.1109/IEDM.2009.5424418

N. Cavassilas et al., Appl. Phys. Lett. 96, 102102 (2010). http://dx.doi.org/10.1063/1.3352558

- Impurity effects:

M. Bescond et al., J. Appl. Phys. 107, 093703 (2010). http://dx.doi.org/10.1063/1.3399999

M. P. Persson et al., Phys. Rev. B 82, 115318 (2010). http://dx.doi.org/10.1103/PhysRevB.82.115318

X. Blase et al., Phys. Rev. Lett. 100, 046802 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.046802

- Influence of roughness at the Si/SiO2 interface and remote Coulomb scattering:

S. Poli et al., IEEE-Transactions on Electron Devices 55, 2968-2976 (2008).

http://dx.doi.org/10.1109/TED.2008.2005164

S. Poli et al., IEEE-Transactions on Electron Devices 56, 1191-1198 (2009).

http://dx.doi.org/10.1109/TED.2009.2019380

C. Buran et al., IEEE-Transactions on Electron Devices 56, 2186-2192 (2009).

http://dx.doi.org/10.1109/TED.2009.2028382

M.P. Persson et al. Nanolett. 8, 4146 (2008). http://dx.doi.org/10.1021/nl801128f

- Influences of phonon interactions:

S. Poli, M.G. Pala, IEEE Electron Device Letters 30, 1212-1214 (2009).

http://dx.doi.org/10.1109/LED.2009.2031418

W. Zhang et al., Phys. Rev. B 82, 115319 (2010).  http://dx.doi.org/10.1103/PhysRevB.82.115319

E. Bourgeois et al., Phys. Rev. B 81, 193410 (2010). http://dx.doi.org/10.1103/PhysRevB.81.193410

- Interface induced correlation effects:

C. Li et al., Appl.Phys. Lett. 97, 252109 (2010). http://link.aip.org/link/doi/10.1063/1.3526739

C. Li et al., Phys. Rev. B, 80, 195318 (2009). http://dx.doi.org/10.1103/PhysRevB.80.195318

- Bande structure calculations:

Y-M. Niquet, D. Rideau et al., Phys. Rev. B 79, 245201 (2009).

http://link.aip.org/link/doi/10.1103/PhysRevB.79.245201

Equipes et entreprises impliquées :